有機化学まとめ 7 有機化学まとめ 8

$$C_nH_{2n+2} \longleftrightarrow Alkane (鎖式飽和炭化水素)$$

CH ₄	C ₄ H ₁₀ (2種類)
CH	C.H. (2.括版)
C_2H_6	C ₅ H ₁₂ (3種類)
C ₃ H ₈	
C3118	
C ₆ H ₁₄ (5種類)	

$$C_nH_{2n+2} \longleftrightarrow Alkane (鎖式飽和炭化水素)$$

CH_4	C ₄ H ₁₀ (2種類)	
Methane メタン	$\mathrm{CH_3-CH_2-CH_2-CH_3}$ Butane $\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}$	CH ₃ -CH-CH ₃ し CH ₃ 2-Methylpropane 2-メチルプロパン
C_2H_6	C ₅ H ₁₂ (3種類)	
CH ₃ - CH ₃ Ethane エタン	CH ₃ -CH ₂ -CH ₂ -Pentane ペンタン	-CH ₂ -CH ₃
C ₃ H ₈ CH ₃ -CH ₂ -CH ₃ Propane プロパン	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 $2,2$ -Dimethylpropane $2,2$ -ジメチルプロパン	$CH_3-CH-CH_2-CH_3$ CH_3 2-Methylbutane $2-\mathcal{X}\mathcal{F}\mathcal{N}\mathcal{T}\mathcal{G}\mathcal{Y}$
C ₆ H ₁₄ (5 種類) CH ₃ -CH ₂ -CH ₂ -CH ₂	-CH ₂ -CH ₂ CH ₂ -	-CH-CH ₂ -CH ₂ -CH ₃
Hexane ヘキサン	2 3 3	CH ₂ CH ₂ CH ₃ $\begin{pmatrix} 1 \\ CH_3 \end{pmatrix}$ 2-Methylpentane $\begin{pmatrix} 2-\lambda \neq \nu \wedge^2 \vee \beta \vee \gamma \end{pmatrix}$
CH ₃ -CH ₂ -CH-CH ₂ -Cl CH ₃ 3-Methylpentane	CH_3 $CH_3 - C - CH_2 - CH_3$ CH_3 CH_3 CH_3 CH_3 2,2-Dimethylbutane	CH ₃ -CH-CH-CH ₃ CH ₃ CH ₃ CH ₃ CH ₃

有機化学まとめ 9 有機化学まとめ 10

C ₇ H ₁₆ (9種類)	
Heptane ヘプタン	2-Methylhexane 2-メチルヘキサン
3-Methylhexane 3-メチルヘキサン	2,3-Dimethylpentane 2,3-ジメチルペンタン
CH ₃ I CH ₃ -C-CH ₂ -CH ₂ -CH ₃ I CH ₃	$\begin{array}{ccc} \operatorname{CH_3-CH-CH_2-CH-CH_3} \\ \operatorname{I} & \operatorname{I} \\ \operatorname{CH_3} & \operatorname{CH_3} \end{array}$
CH ₃ CH ₃ -CH ₂ -C-CH ₂ -CH ₃ CH ₃	$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{I} \\ \operatorname{CH_3-C-CH-CH_3} \\ \operatorname{I} \\ \operatorname{CH_3-CH_3} \end{array}$
СН ₃ -СН ₂ -СН-СН ₂ -СН ₃ СН ₂ СН ₃	

C ₇ H ₁₆ (9種類)	
$\mathrm{CH_3-CH_2-CH_2-CH_2-CH_2-CH_2-CH_3}$ $\mathrm{Heptane}$ $\sim \mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}$	CH_3 - CH - CH_2 - CH_2 - CH_2 - CH_3 CH_3 2-Methylhexane 2 -メチルヘキサン
CH_3 - CH_2 - CH - CH_2 - CH_2 - CH_3 CH_3 3-Methylhexane 3 -メチルヘキサン	CH_3 - CH - CH - CH_2 - CH_3 CH_3 CH_3 2,3-Dimethylpentane CH_3 - CH_3
CH_3 CH_3 CH_3 CH_2 CH_2 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3	$\mathrm{CH_3}$ ー CH ー $\mathrm{CH_2}$ ー CH ー $\mathrm{CH_3}$ $\mathrm{CH_3}$ $\mathrm{CH_3}$ $\mathrm{CH_3}$ 2,4-Dimethylpentane $\mathrm{CH_3}$ $\mathrm{CH_3}$ $\mathrm{CH_3}$
CH_3 $CH_3-CH_2-C-CH_2-CH_3$ CH_3 CH_3 3,3-Dimethylpentane $3,3$ -ジメチルペンタン	CH_3
CH_3 - CH_2 - CH - CH_2 - CH_3 CH_2 CH_3 3-Ethylpentane 3 - x + y -	

有機化学まとめ 11 有機化学まとめ 12

$C_nH_{2n} \rightarrow$	Alkene または	cycloalkane
	(アルケン)	(シクロアルカン)

1個の二重結合

環状構造

C_2H_4	C ₃ H ₆ (2 種類)	
alker	e alkene	cycloalkane
C ₄ H ₈ (6種類)		i
alker	e alkene	cycloalkane
alker	e alkene	cycloalkane

1個の二重結合

環状構造

C_2H_4	C ₃ H ₆ (2種類)	
alkene	alkene	cycloalkane
CH ₂ =CH ₂	H $C = C$ CH_3	$\begin{array}{c} \text{CH}_2 - \text{CH}_2 \\ \diagdown \swarrow \\ \text{CH}_2 \end{array}$
Ethylene (Ethene) エチレン (エテン)	Propene (Propylene) プロペン (プロピレン)	Cyclopropane シクロプロパン
C ₄ H ₈ (6種類)		
alkene	alkene	cycloalkane
H $C = C$ $CH_2 - CH_3$	$^{\text{H}}_{\text{C}}=\text{C}^{\text{CH}_3}_{\text{CH}_3}$	$\begin{array}{c} \operatorname{CH}_2 - \operatorname{CH}_2 \\ \operatorname{I} \\ \operatorname{CH}_2 - \operatorname{CH}_2 \end{array}$
1-Butene 1-ブテン	2-Methylpropene 2-メチルプロペン	Cyclobutane シクロブタン
alkene	alkene	cycloalkane
CH ₃ C=C H CH ₃	$C = C$ CH_3 $C = C$ CH_3	$CH_2 - CH - CH_3$ CH_2
trans-2-Butene トランス-2-ブテン	cis-2-Butene シス-2-ブテン	Methylcyclopropane メチルシクロプロパン

有機化学まとめ 13 有機化学まとめ 14

C ₅ H ₁₀ (12種類)	
H C=C H CH ₂ -CH ₂ -CH ₃	CH ₃ C=C CH ₂ -CH ₃
HC=CCCH3 CH2-CH3	CH ₃ C=C CH ₂ -CH ₃
H C=C H CH-CH ₃ CH ₃	$^{\text{H}}_{\text{CH}_3}$ C=C $^{\text{CH}_3}_{\text{CH}_3}$
CH ₂ -CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	CH ₂ -CH - CH ₃ CH ₂ -CH ₂ CH ₂ -CH ₂
CH2—CH-CH2-CH3 CH2	CH3 CH_2 cycloalkane CH_3 CH_2 cis-1,2-Dimethylcyclopropane CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 $CH_$
CH_3 cycloalkane CH_2 CH_3 CH_2 CH_3 CH_2 1,1-Dimethylcyclopropane CH_3 CH_2 1,1-ジメチルシクロプロパン	H CH3 cycloalkane CH3

C₅H₁₀(12種類)	
alkene H $C=C$ H $CH_2-CH_2-CH_3$ 1-Pentene $1-4 \sim 7 \sim 7$	$CH_3 \\ H \\ C = C \\ CH_2 - CH_3$ $trans-2-Pentene$ $\vdash \exists \lor \lor \lor \neg \lor \neg \lor \neg \lor \neg \lor$
alkene H $C = C$ CH_3 $CH_2 - CH_3$ 2-Methyl-1-butene $2-\cancel{x} + \cancel{y} - 1 - \cancel{y} = \cancel{y}$	alkene CH_3 $C=C$ H $C=C$ H CH_3 $C=C$ CH_2 CH_3 $C=C$ C C C C C C C C C
alkene H $C=C$ H $CH-CH_3$ CH_3 3-Methyl-1-butene $3-\mathcal{I}$	alkene CH_3 $C=C$ CH_3 CH_3 2-Methyl-2-butene $2-\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{F}$
CH $_2$ -CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_2$ CYcloalkane	cycloalkane $\operatorname{CH}_2-\operatorname{CH}-\operatorname{CH}_3$ $\operatorname{CH}_2-\operatorname{CH}_2$ $\operatorname{CH}_2-\operatorname{CH}_2$ $\operatorname{Methylcyclobutane}$ $\operatorname{{}}$
CH $_2$ —CH $^-$ CH $_2$ —CH $_3$ CH $_2$ Ethylcyclopropane エチルシクロプロパン	H CYCloalkane H CYCloalkane CH_3 CH_3 CH_2 cis-1,2-Dimethylcyclopropane シス-1, 2ジメチルシクロプロパン
CH3 cycloalkane CH_2 — C CH_3 CH_2 — C CH_3 CH_2 $1,1$ -Dimethylcyclopropane $1,1$ -ジメチルシクロプロパン	H CH_3 cycloalkane CH_3 C

有機化学まとめ 15 有機化学まとめ 16

$C_nH_{2n-2} \longrightarrow \underset{(\mathcal{T}\mathcal{U}+\mathcal{V})}{Alkyne}$, etc.

1個の三重結合

C_2H_2	C ₃ H ₄ (2種類)
all	kyne alkyne
	Propyne
	プロピン
	$CH_2 = C = CH_2$
	1,2-propadiene 1,2-プロパジエン
	(アレン allene)
C ₄ H ₆	
all	kyne diene
	$CH_2 = CH - CH = CH_2$
1-Butyne	1,3-Butadiene
1-ブチン	1, 3-ブタジエン
all	kyne diene
$CH_3 - C \equiv C - CH_3$	$CH_2 = C = CH - CH_3$
	51-2 6 61 51-3
2-Butyne	1,2-Butadiene
2-ブチン	1, 2-ブタジエン

$C_nH_{2n-2} \longrightarrow \underset{(\mathcal{T} \mu \neq \nu)}{Alkyne}$, etc.

1個の三重結合

C_2H_2		C ₃ H ₄ (2 種類)	
	alkyne	al	kyne
		CH≡C−CH ₃	
СН≡СН		Propyne	
CII-CII		プロピン	
Ethyne Acetylene			
エチン アセチレン		$CH_2 = C = CH_2$	
		1,2-propadiene 1,2-プロパジエン (アレン allene)	
C_4H_6			
	alkyne		diene
$CH = C - CH_2 - CH_3$		$CH_2 = CH - CH = CH_2$	
1-Butyne		1,3-Butadiene	
1-ブチン		1, 3-ブタジエン	
	alkyne		diene
$CH_3 - C \equiv C - CH_3$		$CH_2 = C = CH - CH_3$	
2-Butyne		1,2-Butadiene	
2-ブチン		1, 2-ブタジエン	

有機化学まとめ 17 有機化学まとめ 18

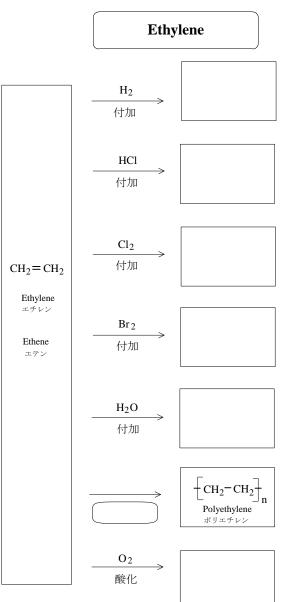
$$\begin{array}{ccc} C_nH_{2n+2}O \rightarrow & Alcohol & Ether \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

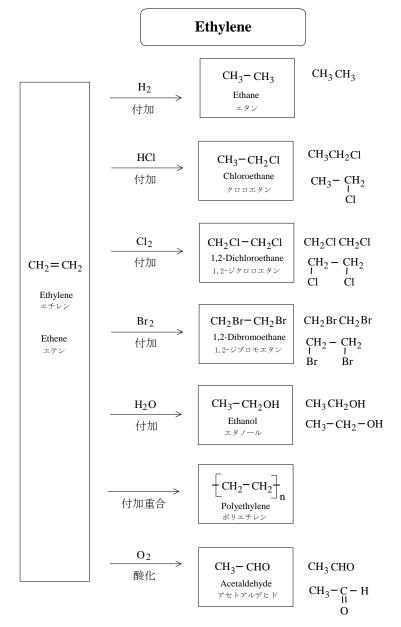
CH ₄ O	C ₂ H ₆ O (2種類)
C₃H ₈ O (3種類)	

$$C_nH_{2n+2}O \rightarrow Alcohol$$
 Ether $\mathcal{T}_{\mathcal{P}}\mathcal{P}_{\mathcal{P}}\mathcal{P}_{\mathcal{P}}\mathcal{P}_{\mathcal{P}}$ -O-

CH ₄ O	C ₂ H ₆ O (2種類)
CH ₃ -OH	CH ₃ -CH ₂ -OH
Methanol (Methyl alcohol)	Ethanol (Ethyl alcohol)
メタノール (メチルアルコール)	エタノール (エチルアルコール)
C ₃ H ₈ O (3種類)	
CH ₃ -CH ₂ -CH ₂ -OH 1-Propanol 1-プロパノール	CH ₃ -O-CH ₃ Dimethyl ether ジメチルエーテル
CH ₃ -CH-CH ₃ OH 2-Propanol 2-プロパノール	CH ₃ −CH ₂ −O−CH ₃ Ethyl methyl ether エチルメチルエーテル

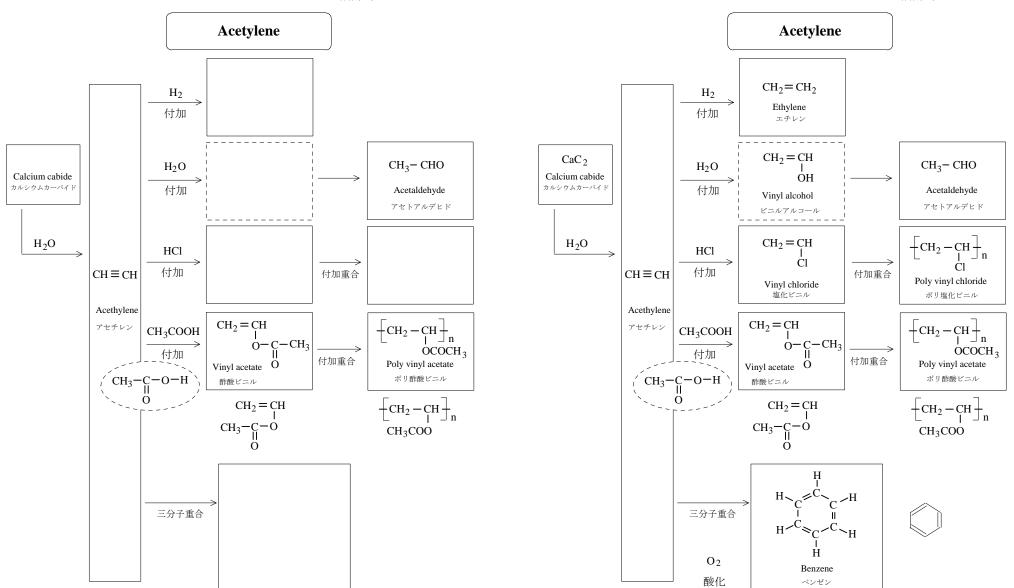
 $C_4H_{10}O$

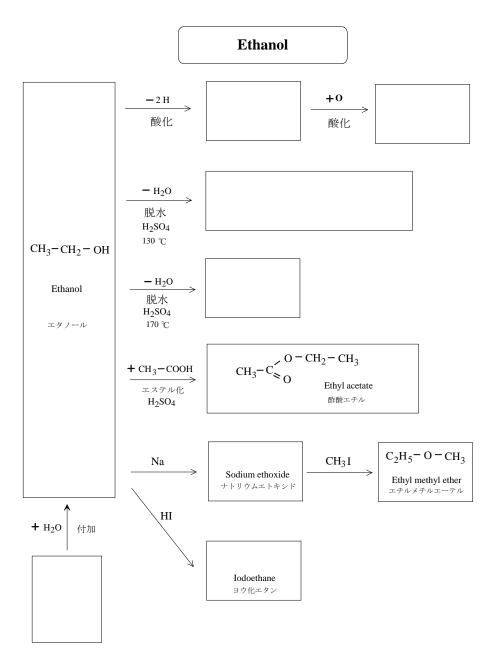

不斉炭素原子があるのはどれか.

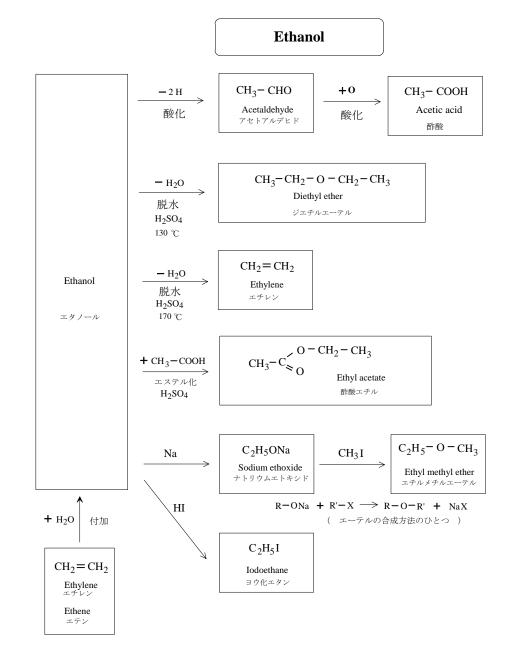

СН ₃ -СН ₂ -СН ₂ -СН ₂ -ОН	Alcohol	CH ₃ -CH-CH ₂ -CH ₃ OH	Alcohol
СН ₃ СН ₃ -СН-СН ₂ -ОН	Alcohol	CH ₃ CH ₃ – C – CH ₃ OH	Alcohol
CH ₃ -CH ₂ -O-CH ₂ -CH ₃	Ether	CH ₃ -CH ₂ -CH ₂ -O-CH ₃	Ether
CH ₃ -CH-O-CH ₃ 「 CH ₃ Isopropyl methyl ether イソプロピルメチルエーテル	Ether		

 $C_4H_{10}O$

Alcohol	Alcohol
CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH 1-Butanol $1-\vec{\gamma}\beta /-\nu$	** CH ₃ -*CH-CH ₂ -CH ₃ OH 2-Butanol 2-ブタノール
CH ₃ Alcohol CH ₃ CH ₂ -OH CH ₃ -CH-CH ₂ -OH 2-Methyl-1-propanol 2-メチル-1-プロパノール	CH ₃ Alcohol CH ₃ -C-CH ₃ OH 2-Methyl-2-propanol 2-メチル-2-プロパノール
Ether	Ether
$CH_3 - CH_2 - O - CH_2 - CH_3$	$CH_3-CH_2-CH_2-O-CH_3$
Diethyl ether	Methyl propyl ether
ジエチルエーテル	メチルプロピルエーテル
Ether CH ₃ -CH-O-CH ₃ CH ₃ Isopropyl methyl ether イソプロピルメチルエーテル	


有機化学まとめ 21 有機化学まとめ 22




* 欄外の構造式でもよい

有機化学まとめ 23 有機化学まとめ 24

有機化学まとめ 25 有機化学まとめ 26

アルコールの酸化

СН3-ОН	СН ₃ -СН ₂ -ОН	CH ₃ -CH ₂ -CH ₂ -OH
− 2Н	↓-2H	↓ – 2H
+0	+ 0	+ 0
CH ₃ -CH-CH ₃ OH	CH ₃ -CH-CH ₂ -CH ₃ OH	CH ₃ CH ₃ -C-CH ₃ OH
_ 2Н	↓-2H	− 2Н
+ 0	+ O	↓ + 0

アルコールの酸化

CH ₃ − OH Methanol メタノール	CH ₃ −CH ₂ −OH Ethanol エタノール	CH ₃ -CH ₂ -CH ₂ -OH 1-Propanol 1-プロパノール
ー 2H H - CHO Formaldehyde ホルムアルデヒド	ー 2H CH ₃ -CHO Acetaldehyde アセトアルデヒド + O CH ₃ -COOH Acetic acid	ー 2H CH ₃ -CH ₂ -CHO Propionaldehyde プロピオンアルデヒド + O CH ₃ -CH ₂ -COOH Propanoic acid
ギ酸	酢酸	Propanoic acid プロピオン酸
CH ₃ -CH-CH ₃ OH 2-Propanol	CH ₃ -CH-CH ₂ -CH ₃ OH 2-Butanol	$\begin{array}{c} \operatorname{CH_3} \\ \\ \operatorname{CH_3} - \operatorname{C} - \operatorname{CH_3} \\ \\ \operatorname{OH} \\ \\ 2\text{-Mthyl-2-propanol} \end{array}$
↓ – 2H	 − 2H	− 2H
CH ₃ -C-CH ₃ O Acetone アセトン + O	$CH_3 - C - CH_2 - CH_3$ O 2-Butanone $2 - \mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}$	+ O

Carboxylic acid カルボン酸

Formic acid	Acetic acid	Acetic anhyderide
Fumaric acid	Maleic acid	Maleic anhyderide
		•

カルボン酸の強さは、どのくらいか.

R-COOH

HCl,
$$H_2SO_4 > H_2CO_3 > C6H5-OH$$

Carboxylic acid カルボン酸

Formic acid	Acetic acid	Acetic anhyderide
O H-C-O-H 	СН ₃ -СООН СН ₃ -С-О-Н О	CH3-C O
Fumaric acid	Maleic acid	Maleic anhyderide
HOOC C H	н С соон	H C C O

カルボン酸の強さは、どのくらいか.

 $HCl_1, H_2SO_4 > R-COOH > H_2CO_3 > C6H5-OH$

したがって、炭酸水素ナトリウムにカルボン酸を加えると、二酸化炭素が発生する. (これはカルボン酸の確認に使われる)

 $R\text{-COOH} \quad + \quad NaHCO_3 \quad \rightarrow \quad R\text{-COONa} \quad + \quad H_2O \, + \, CO_2$

R-COOH + NaHCO₃ \rightarrow R-COONa + H₂O + CO₂ \rightarrow 強い酸 弱い酸の塩 弱い酸

Ester

Acid + Alcohol	Ester
Formic acid + Methanol	Methyl formate
Formic acid + Ethanol	Ethyl formate
Acetic acid + Methanol	Methyl acetate
Acetic acid + Ethanol	Ethyl acetate

Ester

Acid + Alcohol

Ester

Formic acid + Methanol

Methyl formate

Formic acid + Ethanol

Ethyl formate

$$H-C-O-H$$
 $H-O-CH_2-CH_3$ $H-C-O-CH_2-CH_2$

Acetic acid + Methanol

Methyl acetate

$$CH_3-C-O-H H-O-CH_3$$
 $CH_3-C-O-CH_3$

Acetic acid + Ethanol

Ethyl acetate

$$CH_3 - C - O - H \quad H - O - CH_2 - CH_3$$
 \longrightarrow $CH_3 - C - O - CH_2 - CH_3$
 O

有機化合物の推定

1	臭素水の色が消えた.	\rightarrow	
2	Na を加えると H ₂ 発生.	\rightarrow	
3	銀鏡反応 フェーリング液を還元	\rightarrow	
4	ョードホルム反応 (CHI ₃)	\rightarrow	$\begin{array}{ccc} H \\ - \stackrel{I}{\mathrm{C}} - \mathrm{CH}_3 & - \stackrel{C}{\mathrm{C}} - \mathrm{CH}_3 \\ \mathrm{OH} & \mathrm{O} \end{array}$
5	炭酸水素ナトリウム (NaHCO ₃) で,気体発生. (CO ₂)	\rightarrow	
6	酸で,還元性あり	\rightarrow	
7	NaOH 水溶液を加えて加熱すると、	→	

均一な溶液となる.

8 酸化すると、還元性の物質が生成

有機化合物の推定

1 臭素水の色が消えた.

- → 不飽和結合 ($\mathbf{C} = \mathbf{C}$ $\mathbf{C} = \mathbf{C}$)
- Na を加えると H₂ 発生.
- → アルコール (**OH**)
- 3 銀鏡反応 フェーリング液を還元
- **→** アルデヒド (-**CHO**)

4 ヨードホルム反応 (**CHI₃**)

- $\begin{array}{cccc}
 & & & & H & & & \\
 & & & C & CH_3 & C & CH_3 & & \\
 & & & OH & & O
 \end{array}$
- 5 炭酸水素ナトリウム (**NaHCO**₃) → カルボン酸 (-**COOH**) で、気体発生. (**CO**₂)

$$R$$
-COOH + NaHCO₃ → R-COONa + H_2O + CO_2 _v↑ 強い酸

6 酸で、還元性あり

- → ギ酸 アルデヒド基 H-C-O-H O カルボキシル基
- 7 NaOH 水溶液を加えて加熱すると, → エステル 均一な溶液となる.

R - COO - R' + NaOH
$$\rightarrow$$
 R-COO \rightarrow R' + R'OH 水に不溶 水溶性 \rightarrow 水溶性 \rightarrow (低級の場合)

8 酸化すると、還元性の物質が生成 → 第一級アルコール

$$- CH_2 - OH$$
 $\xrightarrow{- 2H}$ $- CHO$ 第一級アルコール アルデヒド