反応式の作り方

金属が溶けて、H₂を発生する場合

(例)

Na, H₂O → H₂
Fe, H₂SO₄ → H₂

1. 金属と H⁺で考える。

2Na + 2H⁺ → 2Na⁺ + H₂
Fe + 2H⁺ → Fe²⁺ + H₂

2. 水の場合は、OH⁻を両辺に加える。
2'. 酸の場合は、酸の陰イオンを両辺に加える。
3. たし算をする。

2Na + 2H⁺ → 2Na⁺ + H₂
+ 2OH⁻ → 2OH⁻

2Na + 2H₂O → 2NaOH + H₂

Fe + 2H⁺ → Fe²⁺ + H₂
+ SO₄²⁻ → SO₄²⁻

Fe + H₂SO₄ → FeSO₄ + H₂

（問）

<table>
<thead>
<tr>
<th>反応式</th>
<th>反応式</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na , H₂O →</td>
<td></td>
</tr>
<tr>
<td>K , H₂O →</td>
<td></td>
</tr>
<tr>
<td>Ca , H₂O →</td>
<td></td>
</tr>
<tr>
<td>Mg , H₂O →</td>
<td></td>
</tr>
<tr>
<td>Zn , H₂SO₄ →</td>
<td></td>
</tr>
<tr>
<td>Fe , H₂SO₄ →</td>
<td></td>
</tr>
<tr>
<td>Al , HCl →</td>
<td></td>
</tr>
</tbody>
</table>

（解）

<table>
<thead>
<tr>
<th>反応式</th>
<th>反応式</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Na + 2H₂O → 2NaOH + H₂</td>
<td></td>
</tr>
<tr>
<td>2K + 2H₂O → 2KOH + H₂</td>
<td></td>
</tr>
<tr>
<td>Ca + 2H₂O → Ca(OH)₂ + H₂</td>
<td></td>
</tr>
<tr>
<td>Mg + 2H₂O → Mg(OH)₂ + H₂</td>
<td></td>
</tr>
<tr>
<td>Zn + H₂SO₄ → ZnSO₄ + H₂</td>
<td></td>
</tr>
<tr>
<td>Fe + H₂SO₄ → FeSO₄ + H₂</td>
<td></td>
</tr>
<tr>
<td>2Al + 6HCl → 2AlCl₃ + 3H₂</td>
<td></td>
</tr>
</tbody>
</table>
金属が溶けて，H₂以外の気体(SO₂,NO,NO₂)を発生する場合

<table>
<thead>
<tr>
<th>反応式</th>
<th>成分</th>
<th>反応式</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>HNO₃(濃硝酸)</td>
<td>NO₂</td>
</tr>
<tr>
<td>Cu</td>
<td>HNO₃(希硝酸)</td>
<td>NO</td>
</tr>
<tr>
<td>Cu ,</td>
<td>H₂SO₄(熱濃硫酸)</td>
<td>SO₂</td>
</tr>
</tbody>
</table>

1. 酸化・還元の半反応式を組み合わせる。
2. H⁺ がある場合は，酸の陰イオンを組み合わせる。

例 1
Cu , HNO₃(希硝酸) → NO

\[
2\text{HNO}_3 + 6\text{H}^+ + 6e^- \rightarrow 2\text{NO} + 4\text{H}_2\text{O}
\]
\[
3\text{Cu} \rightarrow 3\text{Cu}^{2+} + 6\text{e}^-
\]
\[
+ 6\text{NO}_3^- \rightarrow + 6\text{NO}_3^-
\]

\[
3\text{Cu} + 8\text{HNO}_3 \rightarrow 3\text{Cu(NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O}
\]

例 2
Cu , H₂SO₄(熱濃硫酸) → SO₂

\[
\text{H}_2\text{SO}_4 + 2\text{H}^+ + 2e^- \rightarrow \text{SO}_2 + 2\text{H}_2\text{O}
\]
\[
\text{Cu} \rightarrow \text{Cu}^{2+} + 2\text{e}^-
\]
\[
+ \text{SO}_4^{2-} \rightarrow + \text{SO}_4^{2-}
\]

\[
\text{Cu} + 2\text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O}
\]
反応式の作り方

塩と酸（塩基）との反応で、気体（SO₂, CO₂, HF, NH₃）が発生する反応
強い酸（塩基）により、弱い酸（塩基）が遊離する場合

（例）

<table>
<thead>
<tr>
<th>強い酸</th>
<th>弱い酸</th>
<th>弱い酸</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaHSO₃</td>
<td>HCl</td>
<td>SO₂ + H₂O + NaCl</td>
</tr>
<tr>
<td>Na₂SO₃</td>
<td>2 HCl</td>
<td>SO₂ + H₂O + 2 NaCl</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>HCl</td>
<td>CO₂ + H₂O + NaCl</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>2 HCl</td>
<td>CO₂ + H₂O + 2 NaCl</td>
</tr>
<tr>
<td>CaF₂</td>
<td>H₂SO₄</td>
<td>2 HF + CaSO₄</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>NaOH</td>
<td>NH₃ + H₂O + NaCl</td>
</tr>
<tr>
<td>FeS</td>
<td>2 HCl</td>
<td>H₂S + FeCl₂</td>
</tr>
</tbody>
</table>

（SO₂, H₂SO₃, HSO₃⁻, SO₃²⁻）
（CO₂, H₂CO₃, HCO₃⁻, CO₃²⁻）
（NH₃, NH₄⁺）

はそれぞれ同じものであると思え。

気体が水に溶けるときの反応

SO₂ + H₂O → H₂SO₃ → H⁺ + HSO₃⁻ → 2H⁺ + SO₃²⁻
CO₂ + H₂O → H₂CO₃ → H⁺ + HCO₃⁻ → 2H⁺ + CO₃²⁻
NH₃ + H₂O → (NH₂OH) → NH₄⁺ + OH⁻

組み立て方

1. 塩と酸（塩基）の電離の式を書く。
2. 「気体が水に溶けるときの反応」の逆の反応がおこり、気体が発生する。

NaHSO₃ , HCl → SO₂

Na₂CO₃ , HCl → CO₂

(5)

(6)
反応式の作り方

$\text{CaSO}_4 + 2 \text{HF} \rightarrow \text{CaF}_2 + \text{H}_2\text{SO}_4$

$\text{CaSO}_4 \rightarrow \text{Ca}^{2+} + \text{SO}_4^{2-}$

（強い酸の塩の生成）

$2 \text{HF} \rightarrow 2 \text{F}^- + 2 \text{H}^+$

（弱い酸の遊離）

$\text{HF} \rightarrow \text{H}_2\text{SO}_4, \text{CaF}_2$

反応式の作り方 3’

不揮発性の塩の生成により、揮発性の塩が遊離する場合

<table>
<thead>
<tr>
<th>不揮発性の酸</th>
<th>挥発性の酸</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl , H$_2$SO$_4$</td>
<td>HCl +</td>
</tr>
<tr>
<td>NaNO$_3$, H$_2$SO$_4$</td>
<td>HNO$_3$ +</td>
</tr>
</tbody>
</table>

組立て方

塩と酸（塩基）の電離の式を書く。

$\text{NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{HCl}$

$\begin{align*}
\text{Cl}^- & \quad \text{Na}^- \\
\text{H}^+ & \quad \text{HSO}_4^- \\
\end{align*}$

（揮発性の酸の遊離）

$\text{NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{HCl} + \text{NaHSO}_4$

さらに高温になると、HSO$_4^-$ → H$^+$ + SO$_4^{2-}$ の反応が進む

最終的には、下記のようになる。

$2\text{NaCl} + \text{H}_2\text{SO}_4 \rightarrow 2\text{HCl} + \text{Na}_2\text{SO}_4$
反応式の作り方

(問)
31. Na_2SO_3 , HCl →

32. NaHCO_3 , HCl →

33. Na_2CO_3 , HCl →

34. CaF_2 , H_2SO_4 →

35. Na_2CO_3 , CH_3COOH →

36. NaHCO_3 , CH_3COOH →

37. FeS , HCl →

38. NH_4Cl , NaOH →

39. $(\text{NH}_4)_2\text{SO}_4$, Ca(OH)_2 →

40. NaCl + H_2SO_4 →

(解)
31. $\text{Na}_2\text{SO}_3 + 2 \text{HCl} \rightarrow 2 \text{NaCl} + \text{SO}_2 + \text{H}_2\text{O}$

32. $\text{NaHCO}_3 + \text{HCl} \rightarrow \text{NaCl} + \text{CO}_2 + \text{H}_2\text{O}$

33. $\text{Na}_2\text{CO}_3 + 2 \text{HCl} \rightarrow 2 \text{NaCl} + \text{CO}_2 + \text{H}_2\text{O}$

34. $\text{CaF}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{CaSO}_4 + 2 \text{HF}$

35. $\text{Na}_2\text{CO}_3 + 2 \text{CH}_3\text{COOH} \rightarrow 2 \text{CH}_3\text{COONa} + \text{CO}_2 + \text{H}_2\text{O}$

36. $\text{NaHCO}_3 + \text{CH}_3\text{COOH} \rightarrow \text{CH}_3\text{COONa} + \text{CO}_2 + \text{H}_2\text{O}$

37. $\text{FeS} + 2 \text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2\text{S}$

38. $\text{NH}_4\text{Cl} + \text{NaOH} \rightarrow \text{NaCl} + \text{NH}_3 + \text{H}_2\text{O}$

39. $(\text{NH}_4)_2\text{SO}_4 + \text{Ca(OH)}_2 \rightarrow \text{CaSO}_4 + 2 \text{NH}_3 + 2 \text{H}_2\text{O}$

40. $\text{NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{HCl} + \text{NaHSO}_4$
半反応式の作り方

0. 物質の変化と酸化数をかく。これだけは覚えておく。
酸化数がわからない時は、やり方2を使う。

\[
\begin{array}{c}
\text{MnO}_4^- \rightarrow \text{Mn}^{2+} \\
+7 & 2
\end{array}
\]

やり方1

1. 酸化数の変化から、電子数を考える。

\[
\begin{array}{c}
\text{MnO}_4^- + 5\text{e}^- \rightarrow \text{Mn}^{2+} \\
+7 & +2
\end{array}
\]

2. O の数を、H_2O で合わせる。

\[
\begin{array}{c}
\text{MnO}_4^- + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \\
+7 & +2
\end{array}
\]

3. H の数を、H^+ で合わせる。

\[
\begin{array}{c}
\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \\
+7 & +2
\end{array}
\]

4. 確認（両辺の電荷を計算。等しいはず）

\[
\begin{array}{c}
-1 + 8 - 5 = +2 \\
+2
\end{array}
\]

やり方2

1. O の数を、H_2O で合わせる。

\[
\begin{array}{c}
\text{MnO}_4^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \\
+7 & +2
\end{array}
\]

2. H の数を、H^+ で合わせる。

\[
\begin{array}{c}
\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \\
+7 & +2
\end{array}
\]

3. 電荷を、e^- で合わせる。

\[
\begin{array}{c}
\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \\
-1 + 8 - 5 = +2 \\
+2
\end{array}
\]

還元剤

\[
\begin{array}{c}
\text{H}_2\text{O}_2 \rightarrow \text{O}_2 \\
\text{H}_2\text{C}_2\text{O}_4 \rightarrow 2\text{CO}_2 \\
\text{H}_2\text{S} \rightarrow \text{S} \\
\text{SO}_3 \rightarrow \text{SO}_4^{2-}
\end{array}
\]

酸化剂

\[
\begin{array}{c}
\text{H}_2\text{O}_2 \rightarrow \text{O}_2 \\
\text{MnO}_4^- \rightarrow \text{Mn}^{2+} \\
\text{Cr}_2\text{O}_7^{2-} \rightarrow 2\text{Cr}^{3+} \\
\text{HNO}_3 \rightarrow \text{NO} \\
\text{HNO}_3 \rightarrow \text{NO}_2 \\
\text{H}_2\text{SO}_4 \rightarrow \text{SO}_2 \\
\text{SO}_2 \rightarrow \text{S}
\end{array}
\]
半反応式をつくる (解答)

酸化剤

\[\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow 2\text{H}_2\text{O} \]

\[\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \]

\[2\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O} \]

\[\text{HNO}_3 + 3\text{H}^+ + 3\text{e}^- \rightarrow \text{NO} + 2\text{H}_2\text{O} \]

\[\text{HNO}_3 + \text{H}^+ + \text{e}^- \rightarrow \text{NO}_2 + \text{H}_2\text{O} \]

\[\text{H}_2\text{SO}_4 + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{SO}_2 + 2\text{H}_2\text{O} \]

\[\text{SO}_2 + 4\text{H}^+ + 4\text{e}^- \rightarrow \text{S} + 2\text{H}_2\text{O} \]

還元剤

\[\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}^+ + 2\text{e}^- \]

\[\text{H}_2\text{C}_2\text{O}_4 \rightarrow 2\text{CO}_2 + 2\text{H}^+ + 2\text{e}^- \]

\[\text{H}_2\text{S} \rightarrow \text{S} + 2\text{H}^+ + 2\text{e}^- \]

\[\text{SO}_2 + 2\text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + 4\text{H}^+ + 2\text{e}^- \]