化学反応式を使った計算

化学反応式の意味 —— プロパンの燃焼の場合

C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O

<table>
<thead>
<tr>
<th>分子の数</th>
<th>1</th>
<th>5</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質量(mol)</td>
<td>1 mol</td>
<td>5 mol</td>
<td>3 mol</td>
<td>4 mol</td>
</tr>
<tr>
<td>質量(g)</td>
<td>44 g</td>
<td>5×32 g</td>
<td>3×44 g</td>
<td>4×18 g</td>
</tr>
<tr>
<td>気体の体積(L)</td>
<td>22.4 L</td>
<td>5×22.4 L</td>
<td>3×22.4 L</td>
<td></td>
</tr>
</tbody>
</table>

係数 = 物質量 と考えよ

物質の量の変化 —— 1 mol のプロパンを完全燃焼させた場合

C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O

<table>
<thead>
<tr>
<th>反応前</th>
<th>1 mol</th>
<th>5 mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>反応量 (+)</td>
<td>− 1 mol</td>
<td>− 5 mol</td>
</tr>
<tr>
<td>反応後</td>
<td>0 mol</td>
<td>0 mol</td>
</tr>
</tbody>
</table>
厳密な計算の仕方

88 g のプロパンを完全燃焼させたら、何 g の二酸化炭素ができるか。

\[
\text{C}_3\text{H}_8 + 5 \text{O}_2 \rightarrow 3 \text{CO}_2 + 4 \text{H}_2\text{O}
\]

<table>
<thead>
<tr>
<th>反応量</th>
<th>反応前</th>
<th>反応後</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 mol</td>
<td>0 mol</td>
</tr>
<tr>
<td></td>
<td>10 mol</td>
<td>0 mol</td>
</tr>
<tr>
<td>+ 2 mol</td>
<td>6 mol</td>
<td></td>
</tr>
<tr>
<td>+ 8 mol</td>
<td>8 mol</td>
<td></td>
</tr>
</tbody>
</table>

\[6 \times 44 \text{ g}\]

能率的な計算の仕方

88 g のプロパンを完全燃焼させたら、何 g の二酸化炭素ができるか。

\[
\text{C}_3\text{H}_8 + 5 \text{O}_2 \rightarrow 3 \text{CO}_2 + 4 \text{H}_2\text{O}
\]

\[
\begin{array}{c|c|c}
\text{1 mol} & 3 \text{ mol} & \\
\hline
44 \text{ g} & \text{………} & 3 \times 44 \text{ g} \\
88 \text{ g} & \text{………} & x \text{ g} \\
\end{array}
\]

\[x = 6 \times 44 \text{ g}\]

88 g のプロパンを完全燃焼させるには、何 L の酸素が必要か。

\[
\text{C}_3\text{H}_8 + 5 \text{O}_2 \rightarrow 3 \text{CO}_2 + 4 \text{H}_2\text{O}
\]

\[
\begin{array}{c|c}
\text{1 mol} & 5 \text{ mol} \\
\hline
44 \text{ g} & \text{………} 5 \times 22.4 \text{ L} \\
88 \text{ g} & \text{………} x \text{ L} \\
\end{array}
\]

\[x = 224 \text{ L}\]
マグネシウム 0.24 g に、濃度 1.0 mol/L の塩酸を加えて水素を発生させる。塩酸の体積と、発生する水素の体積の関係をグラフにせよ。

マグネシウム 0.24 g がすべて反応するのに必要な塩酸を x mL とするとき

\[
\text{Mg} + 2 \text{HCl} \rightarrow \text{MgCl}_2 + \text{H}_2
\]

0.24 g

\[
\begin{array}{c}
0.01 \text{mol} \\
0.02 \text{mol} \\
0.01 \text{mol}
\end{array}
\]

\[
\begin{array}{c}
x \text{mL} \\
0.224 \text{L} \\
(224 \text{mL})
\end{array}
\]

\[
1.0 \text{mol/L} \times \frac{x}{1000} = 0.02 \text{mol}
\]

\[
x = 20 \text{mL}
\]

発生する水素の体積は、

塩酸の量が 20 mL までは、塩酸の量で決まり、塩酸の量が 20 mL を超えると、マグネシウムの量で決まる。
容積 11.2 L の反応容器に、黒鉱 2.4 g を入れ、標準状態で酸素を満たし、完全に燃焼させた。未反応の酸素は、標準状態で何 L か。

\[
\begin{align*}
C & + O_2 \rightarrow CO_2 \\
2.4 \text{ g} & \parallel 11.2 \text{ L} \\
\text{反応前} & \quad 0.2 \text{ mol} \parallel 0.5 \text{ mol} \\
\text{反応量} & \quad + 0.2 \text{ mol} \quad - 0.2 \text{ mol} \\
\text{反応後} & \quad 0 \text{ mol} \quad 0.3 \text{ mol} \parallel 6.72 \text{ L}
\end{align*}
\]

水素 1.0 g と酸素 16 g とを混合して燃焼させると、水が何 g 生成するか。

\[
\begin{align*}
2 \text{ H}_2 & + O_2 \rightarrow 2 \text{ H}_2O \\
1.0 \text{ g} & \parallel 16 \text{ g} \\
\text{反応前} & \quad 0.5 \text{ mol} \parallel 0.5 \text{ mol} \\
\text{反応量} & \quad + 0.5 \text{ mol} \quad - 0.25 \text{ mol} \quad + 0.5 \text{ mol} \\
\text{反応後} & \quad 0 \text{ mol} \quad 0.25 \text{ mol} \quad 0.5 \text{ mol} \parallel \quad 9 \text{ g}
\end{align*}
\]
プタン \(\text{C}_4\text{H}_{10} \) をある量だけ完全燃焼させると、標準状態で 7.28 L の酸素 \(\text{O}_2 \) が消費された。このプタンの質量は何 g か。また、このとき、二酸化炭素 \(\text{CO}_2 \) は標準状態で何 L 発生するか。

\[
2 \text{C}_4\text{H}_{10} \quad + \quad 13 \text{O}_2 \quad \rightarrow \quad 8 \text{CO}_2 \quad + \quad 10 \text{H}_2\text{O}
\]

\[
2 \text{mol} \quad \parallel \quad 13 \text{mol} \quad \parallel \quad 8 \text{mol}
\]

炭酸水素ナトリウム \(\text{NaHCO}_3 \) を熱すると、炭酸ナトリウム \(\text{Na}_2\text{CO}_3 \) と水 \(\text{H}_2\text{O} \) と二酸化炭素 \(\text{CO}_2 \) に分解する。炭酸水素ナトリウム 42 g を完全に熱分解すると、発生する二酸化炭素は標準状態で何 L か。また、炭酸ナトリウムを53 g つくりたいとき、必要な炭酸水素ナトリウムは何 g か。

\[
2 \text{NaHCO}_3 \quad \rightarrow \quad \text{Na}_2\text{CO}_3 \quad + \quad \text{H}_2\text{O} \quad + \quad \text{CO}_2
\]

\[
2 \text{mol} \quad \parallel \quad 1 \text{mol} \quad \parallel \quad 1 \text{mol} \quad \parallel \quad 1 \text{mol}
\]
プタン C₄H₁₀ をある量だけ完全燃焼させると、標準状態で 7.28 L の酸素 O₂ が消費された。このプタンの質量は何 g か。また、このとき、二酸化炭素 CO₂ は標準状態で何 L 発生するか。

\[
2 \text{C}_4\text{H}_{10} + 13 \text{O}_2 \rightarrow 8 \text{CO}_2 + 10 \text{H}_2\text{O}
\]

\[
2 \text{mol} + 13 \text{mol} \rightarrow 8 \text{mol}
\]

\[
2 \times 58 \text{ g} \quad \cdots \quad 13 \times 22.4 \text{ L} \quad \cdots \quad 8 \times 22.4 \text{ L}
\]

\[
x \text{ g} \quad \cdots \quad 7.28 \text{ L} \quad \cdots \quad y \text{ L}
\]

\[
2 \times 58 : 13 \times 22.4 = x : 7.28
\]

\[
x = 2.90 \text{ g}
\]

\[
13 \times 22.4 : 8 \times 22.4 = 7.28 : y
\]

\[
y = 4.48 \text{ L}
\]

炭酸水素ナトリウム NaHCO₃ を熱すると、炭酸ナトリウム Na₂CO₃ と水 H₂O と二酸化炭素 CO₂ に分解する。炭酸水素ナトリウム 42 g を完全に熱分解すると、発生する二酸化炭素は標準状態で何 L か。また、炭酸ナトリウムを 53 g つくりたいとき、必要な炭酸水素ナトリウムは何 g か。

\[
2 \text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2
\]

\[
2 \text{mol} \rightarrow 1 \text{mol} \rightarrow 1 \text{mol} \rightarrow 1 \text{mol}
\]

\[
2 \times 84 \text{ g} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad 22.4 \text{ L}
\]

\[
42 \text{ g} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad x \text{ L}
\]

\[
2 \times 84 \text{ g} \quad \cdots \quad 106 \text{ g}
\]

\[
y \text{ g} \quad \cdots \quad 53 \text{ g}
\]

\[
2 \times 84 : 22.4 = 42 : x \text{ L}
\]

\[
x = 5.6 \text{ L}
\]

\[
2 \times 84 : 106 = y : 53
\]

\[
y = 84 \text{ g}
\]