1	硫酸銅()の水溶液は,中性を示す。
2	ビーカー中の希硫酸に亜鉛板と銅板を離して浸すと, 亜鉛板の表面から水素が発生するが, 両板を接触させると, 亜鉛板の表面からの水素の発生は著しく減り,銅板の表面から水素が発生するようになる。
3	純水を大気中に放置すると,二酸化炭素を吸収し て弱い酸性を示す。
4	酸化還元反応では,酸化数が増加する原子の数と酸化数が減少する原子の数は,つねに等しい。
5	陽極に炭素棒,陰極に鉄板を用い,塩化ナトリウム水溶液の電気分解を行なったところ,陽極から塩素が,陰極から酸素が発生した。
6	中和滴定に用いる指示薬はそれ自体が酸あるいは 塩基である。
7	陽極に炭素棒,陰極に鉄板を用い,塩化ナトリウム水溶液の電気分解を行なったところ,陰極附近の水溶液は塩基性になった。

		<u></u>
1	誤	酸性を示す。
2	正	
3	正	
4	誤	全然関係ない
5	誤	陰極からは水素が発生する
6	正	
7	正	
,		

物質の変化 2

8	亜鉛板と銅板を薄い硫酸中に浸して,ボルタの電池をつくったとき,両極を導線でつないでも,銅板は溶けない。
9	2 種類の金属を電解質の水溶液に浸して,電池を つくると,イオン化傾向の大きい金属が正極にな る。
10	鉛蓄電池は放電するにつれ,両極の表面がともに 白色になる。
11	0.1 mol/L の硫酸水溶液と 0.1 mol/L 水酸化ナトリウム水溶液を同体積ずつ混合すると中性になる。
12	鉛蓄電池を放電させると,電池内の硫酸の濃度は 減少する。
13	硫酸銅()の水溶液に,白金板を浸すと,白金 板上に銅が析出する。
14	pH 3 の塩酸を1000000倍にうすめると,溶液の pH は 9 になる。

	T
正	
誤	イオン化傾向の大きい金属が負極になる。
Œ	
誤	硫酸は2価だから,酸性
正	
誤	銅が析出するなら,白金が溶け出すぞ
誤	酸はいくら薄めても酸
	誤 正 誤 正 誤

物質の変化 3

15	過酸化水素はふつう酸化剤として働くが,硫酸で酸性にした過マンガン酸カリウム水溶液との反応では,還元剤として働く。
16	炭酸水素イオン HCO3 ⁻ は , 水溶液中で酸にも塩基 にもなりうる。
17	水に塩化水素を溶かすと,オキソニウムイオンと 塩化物イオンが生成する。
18	水溶液が酸性を示す塩を酸性塩という。
19	陽極に炭素,陰極に白金を用いて,塩化ナトリウム水溶液を電気分解すると,陰極に水素が発生する。
20	熱濃硫酸は酸化力が強いので,銀を溶かすことが できる。
21	亜鉛板と銅板を薄い硫酸中に浸して,ボルタの電 池を作ったとき,銅板が正極となる。
22	0.1mol/L の塩酸と 0.1mol/L のアンモニア水を同体 積ずつ混合すると酸性になる。

15	Œ	
16	Œ	
17	正	
18	誤	酸性塩とはいうけど,ちがいます
19	正	
20	Œ	
21	正	
22	Œ	

物質の変化 4

23	スズめっきした鉄板(ブリキ)では,表面のスズ の一部がはがれても,内部の鉄板はさびにくい。
24	過酸化水素や二酸化硫黄は,相手により酸化剤に も還元剤にもなるので,両性酸化物である。
25	一定温度において,水溶液中での弱酸の電離度 は,その酸の濃度が低くなるほど小さくなる。
26	イオン化列は,金属が水溶液中で酸化されやすい 傾向の順に並べたものである。
27	マンガン乾電池の放電が起こると,負極の亜鉛は酸化される。
28	鉛蓄電池の電解液は , 希塩酸である。
29	塩化アンモニウムの水溶液は,弱い酸性を示す。
30	二次電池では,充電のときに起こる反応は,放電 のときに起こる反応の逆反応である。
31	隔膜法で塩化ナトリウム水溶液を電気分解すると,0.1ファラデー(F)の電気量によって,4gの水酸化ナトリウムが生成する。

23	誤	亜鉛めっきしたトタンなら,そういえます
24	誤	酸化剤にも還元剤にもなるけど,両性酸化 物とは言わない
25	誤	酸の濃度が低くなるほど大きくなる。
26	正	
27	正	
28	誤	希硫酸です
29	正	
30	正	
31	正	

物質の変化 5

32	塩化アンモニウムと水酸化ナトリウムをよく混合 して加熱し,発生する気体を五酸化リンで乾燥す る。
33	2本の白金電極を用いて,希硫酸を電気分解する と,陽極に酸素が発生する。
34	陽極と陰極に炭素を用いて,酸化アルミニウムを 融解塩電解すると,陽極の炭素が消費される。
35	電解質水溶液の電気分解においては,陽極で酸化 反応が起こる。
36	二酸化硫黄と三酸化硫黄は,いずれも酸性酸化物 である。
37	亜鉛板と銅板を希硫酸に浸し,この二つの金属を 導線で結ぶと,銅板上で水素が発生する。
38	炭酸水素ナトリウムは,酸性塩であり,その水溶液は弱塩基性を示す。
39	銅の電解精練では銅よりイオン化傾向の大きい不 純物の金属は陽極泥となる。

32	誤	発生するアンモニアは塩基性,酸性の五酸 化リンとは反応する
33	正	
34	正	
35	正	
36	正	
37	正	
38	正	
39	誤	イオン化傾向が大きいものは , イオンで溶けている。イオン化傾向の小さな金などが 陽極泥になる。

物質の変化 6

40	2本の白金電極を用いて,塩化カリウム水溶液を 電気分解すると,陽極に塩素が発生する。
41	0.1mol/L の酢酸水溶液と 0.1mol/L の水酸化ナトリウム水溶液を同体積ずつ混合すると塩基性となる。
42	水は酸として働くことも,塩基として働くこともある。
43	水は酸化剤として働くことはない。
44	水分子は,水素イオンを他の物質から受け取ると き,塩基として働く。
45	濃硝酸は,強い酸化作用を示す。
46	鉄は亜鉛よりイオン化傾向が小さい。そのため, 鉄板に亜鉛をめっきしたトタンにきずがついて鉄 が露出しても,鉄の腐食は抑えられる。
47	二酸化硫黄の水溶液に硫化水素を通じると,硫化水素が還元される。

40	正	
41	正	弱酸と強塩基の中和です。
42	正	
43	誤	強い還元剤の金属ナトリウムと反応すると きは,酸化剤である。
44	正	
45	正	
46	正	
47	誤	硫化水素は還元剤(自分は酸化される)。 二酸化硫黄は,酸化剤にも還元剤にもなる。